2. Light of wavelength 5000 $\stackrel{\circ}{A}$ falls on a plane reflecting surface. What are the wavelength and frequency of the reflected light? For what angle of incidence is the reflected ray normal to the incident ray?

Sol. Given,

The wavelength of the incident light, $\lambda = 5000 \overset{o}{A}$

The wavelength and frequency of the reflected light are the same as that of the incident light.

Wavelength of reflected light is given by = 5000 $\overset{o}{A}$ = 5000 \times 10⁻¹⁰ m

Frequency of reflected light, ν = $\frac{c}{\lambda}$

$$= \tfrac{3\times 10^8}{5000\times 10^{-10}}\,\mathrm{Hz}$$

$$=6 \times 10^{14} \text{Hz}$$

According to the law of reflection, i = r

When, the reflected ray is normal to the incident ray, we have

$$i + r = 90^{\circ}$$

$$i + i = 90^{\circ}$$

$$2i = 90^{\circ}$$

i.e.
$$i = 45^{\circ}$$